Infrared Laser Therapy for Ischemic Stroke: A New Treatment Strategy: Results of the NeuroThera Effectiveness and Safety Trial-1 (NEST-1)
Yair Lampl, Justin A. Zivin, Marc Fisher, Robert Lew, Lennart Welin, Bjorn Dahlof, Peter Borenstein, Bjorn Andersson, Julio Perez, Cesar Caparo, Sanja Ilic and Uri Oron

Stroke 2007;38;1843-1849; originally published online Apr 26, 2007;
DOI: 10.1161/STROKEAHA.106.478230
Stroke is published by the American Heart Association. 7272 Greenville Avenue, Dallas, TX 72514
Copyright © 2007 American Heart Association. All rights reserved. Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/cgi/content/full/38/6/1843

Subscriptions: Information about subscribing to Stroke is online at http://stroke.ahajournals.org/subscriptions/
Permissions: Permissions & Rights Desk, Lippincott Williams & Wilkins, a division of Wolters Kluwer Health, 351 West Camden Street, Baltimore, MD 21202-2436. Phone: 410-528-4050. Fax: 410-528-8550. E-mail: journalpermissions@lww.com
Reprints: Information about reprints can be found online at http://www.lww.com/reprints
Infrared Laser Therapy for Ischemic Stroke: A New Treatment Strategy

Results of the NeuroThera Effectiveness and Safety Trial–1 (NEST-1)

Yair Lampl, MD; Justin A. Zivin, MD, PhD; Marc Fisher, MD; Robert Lew, PhD; Lennart Welin, MD; Bjorn Dahlof, MD; Peter Borenstein, MD; Bjorn Andersson, MD; Julio Perez, MD; Cesar Caparo, MD; Sanja Ilic, MD, MS; Uri Oron, PhD

Background and Purpose—The NeuroThera Effectiveness and Safety Trial–1 (NEST-1) study evaluated the safety and preliminary effectiveness of the NeuroThera Laser System in the ability to improve 90-day outcomes in ischemic stroke patients treated within 24 hours from stroke onset. The NeuroThera Laser System therapeutic approach involves use of infrared laser technology and has shown significant and sustained beneficial effects in animal models of ischemic stroke.

Methods—This was a prospective, intention-to-treat, multicenter, international, double-blind, trial involving 120 ischemic stroke patients treated, randomized 2:1 ratio, with 79 patients in the active treatment group and 41 in the sham (placebo) control group. Only patients with baseline stroke severity measured by National Institutes of Health Stroke Scale (NIHSS) scores of 7 to 22 were included. Patients who received tissue plasminogen activator were excluded. Outcome measures were the patients’ scores on the NIHSS, modified Rankin Scale (mRS), Barthel Index, and Glasgow Outcome Scale at 90 days after treatment. The primary outcome measure, prospectively identified, was successful treatment, documented by NIHSS. This was defined as a complete recovery at day 90 (NIHSS 0 to 1), or a decrease in NIHSS score of at least 9 points (day 90 versus baseline), and was tested as a binary measure (bNIH). Secondary outcome measures included mRS, Barthel Index, and Glasgow Outcome Scale at 90 days after treatment. The primary outcome measure, prospectively identified, was successful treatment, documented by NIHSS. This was defined as a complete recovery at day 90 (NIHSS 0 to 1), or a decrease in NIHSS score of at least 9 points (day 90 versus baseline), and was tested as a binary measure (bNIH). Secondary outcome measures included mRS, Barthel Index, and Glasgow Outcome Scale. Primary statistical analyses were performed with the Cochran-Mantel-Haenszel rank test, stratified by baseline NIHSS score or by time to treatment for the bNIH and mRS. Logistic regression analyses were conducted to confirm the results.

Results—Mean time to treatment was >16 hours (median time to treatment 18 hours for active and 17 hours for control). Time to treatment ranged from 2 to 24 hours. More patients (70%) in the active treatment group had successful outcomes than did controls (51%), as measured prospectively on the bNIH (P=0.035 stratified by severity and time to treatment; P=0.048 stratified only by severity). Similarly, more patients (59%) had successful outcomes than did controls (44%) as measured at 90 days as a binary mRS score of 0 to 2 (P=0.034 stratified by severity and time to treatment; P=0.043 stratified only by severity). Also, more patients in the active treatment group had successful outcomes than controls as measured by the change in mean NIHSS score from baseline to 90 days (P=0.021 stratified by time to treatment) and the full mRS (“shift in Rankin”) score (P=0.020 stratified by severity and time to treatment; P=0.026 stratified only by severity). The prevalence odds ratio for bNIH was 1.40 (95% CI, 1.01 to 1.93) and for binary mRS was 1.38 (95% CI, 1.03 to 1.83), controlling for baseline severity. Similar results held for the Barthel Index and Glasgow Outcome Scale. Mortality rates and serious adverse events (SAEs) did not differ significantly (8.9% and 25.3% for active 9.8% and 36.6% for control, respectively, for mortality and SAEs).

Conclusion—The NEST-1 study indicates that infrared laser therapy has shown initial safety and effectiveness for the treatment of ischemic stroke in humans when initiated within 24 hours of stroke onset. A larger confirmatory trial to demonstrate safety and effectiveness is warranted. (Stroke. 2007;38:1843-1849.)

Key Words: acute stroke ■ clinical trial ■ infrared laser therapy ■ neuroprotection ■ safety and effectiveness

Received November 20, 2006; final revision received January 11, 2007; accepted January 11, 2007.

From the Wolfson Medical Center (Y.L.), Department of Neurology, Holon, Israel; the University of California San Diego (J.Z.), Department of Neurosciences, La Jolla, Calif; the University of Massachusetts Medical Center (M.F.), Worcester, Mass; the MAVERIC Massachusetts Veterans Epidemiology Research and Information Center (R.L), Boston, Mass; the Sahlgrenska University Hospital (J.P.), Department of Medicine, University of Goteborg, Sweden; the Hospital National “Dos de Mayo” (C.C.), Parque de La Medicina Peruana S/N; Cercado-Barrios Altos, Lima, Peru; the Universidad Nacional San Augustin de Arequipa (S.I.), Department of Medicine, Arequipa, Peru; and the Tel Aviv University (U.O.), Department of Zoology, Tel Aviv, Israel.

Correspondence to Sanja Ilic, MD, MS, 2260 Rutherford Road suite 101 Carlsbad, CA 92008. E-mail silic@photothera.com

© 2007 American Heart Association, Inc.

Stroke is available at http://www.strokeaha.org

DOI: 10.1161/STROKEAHA.106.478230

Downloaded from stroke.ahajournals.org at Boston University on June 6, 2007
Stroke is the leading cause of adult disability and remains the third most common cause of death in industrialized nations. At the present time, the only FDA approved treatment for ischemic stroke is tissue plasminogen activator; it must be used within 3 hours of stroke onset. No treatment is currently approved beyond this time point. Rapid intervention currently results in treatment of <5% of patients with stroke, leaving over 95% of the patients with no therapy other than rehabilitation. An effective treatment for stroke that could be administered up to 24 hours after stroke onset would address a significant unmet medical need.

The NeuroThera Laser System (NTS) uses an infrared laser technology that involves photobiostimulation. A large and growing body of scientific literature is available documenting the photobiostimulation effects of infrared laser therapy both in vitro and in vivo. The biological effects of infrared laser therapy are wavelength-specific and are not attributable to thermal effects. Energy in this region of the electromagnetic spectrum is nonionizing and, therefore, poses none of the hazards associated with UV light. It has been demonstrated that irradiation of specific infrared wavelengths is able to penetrate deeply into the brain. This form of therapy is distinguished from photodynamic therapy, which involves using light energy to penetrate the body and to activate a photosensitive drug.

Photobiostimulation involves increased adenosine triphosphate (ATP) formation after energy absorption inside mitochondria. A compound that absorbs energy in the spectral region of interest is known as a chromophore. There is evidence that suggests that a primary mitochondrial chromophore for photobiostimulation is cytochrome c oxidase. This enzyme complex contains 2 copper centers, CuA and CuB. The primary chromophore for the NTS wavelength is in the CuA center which has a broad absorption peak around 830 nm in its oxidized form. The NTS delivers energy at 808 nm, which is within this absorption peak, and is able to penetrate into the brain noninvasively. Cytochrome c oxidase is a terminal enzyme in the cellular respiratory chain and is located in the inner mitochondrial membrane. It plays a central role in the bioenergetics of eukaryotic cells by delivering protons across the inner membrane, and thereby driving the formation of ATP by oxidative phosphorylation. In addition to leading to increased ATP formation, photobiostimulation may also initiate secondary cell-signaling pathways. The overall result is improved energy metabolism, enhanced cell viability, and may also involve prevention of apoptosis in the ischemic penumbra and enhancement of neurorecovery mechanisms.

In vivo studies have suggested that infrared laser therapy could be beneficial for the treatment of acute myocardial infarction, acute ischemic stroke, injured peripheral nerves and spinal cord injury. Lapchak et al. and DeTaboada et al. have shown in 2 different animal models a positive impact of infrared laser therapy on the experimental, ischemic stroke treatment outcomes in New Zealand rabbits (rabbit small clot embolic stroke model [RSCEM]) and Sprague-Dawley rats (permanent middle cerebral artery occlusion). Lapchak has shown that laser treatment at 6 hours poststroke onset in RSCEM improved behavioral performance and produced a durable effect that was measurable 21 days after embolization. De Taboada and Oron have also shown that laser treatment up to 24 hours poststroke onset in permanent middle cerebral artery occlusion showed significant improvement in neurological deficits which was evident at 14, 21 and 28 days poststroke when compared with the sham control group.

Currently, the putative mechanism for infrared laser therapy in stroke involves the stimulation of mitochondria, which then leads to preservation of tissue in the ischemic penumbra and enhanced neurorecovery. The exact mechanistic pathways remain to be elucidated.

Materials and Methods

Study Design

NEST-1 was a prospective, multicenter, international, double-blind, randomized, sham (placebo) controlled trial conducted at 6 medical centers in 3 countries: Israel, Peru, and Sweden. The study examined initial safety and effectiveness of infrared wavelength laser therapy for treatment of patients within 24 hours of ischemic stroke onset. This study was conducted in accordance with the FDA/ICH Good Clinical Practice guidelines and applicable local regulatory requirements. Investigators were required to ensure that this study was conducted in full conformity with the 1983 revision of the Declaration of Helsinki or with the laws and current regulations in biomedical research involving human patients of the country in which the study was conducted, whichever afforded greater protection to the patients. The protocol and information for patients and healthcare providers was approved by each center’s ethics committee or Institutional Review Board. Country-specific independent data monitoring committees conducted safety reviews throughout the study.

Eligible patients were required to be between 40 to 85 years of age, have a clinical diagnosis (within 24 hours of stroke onset) of ischemic stroke causing a measurable neurological deficit (total NIHSS score ranging from 7 to 22 at admittance to the medical center), and to have NTS treatment initiated within 24 hours from stroke onset. The patient or parent legal representative gave written informed consent before enrollment into the study.

Ineligibility Criteria

Patients were excluded if: there was evidence on a CT scan of an intracranial, subdural or subarachnoid hemorrhage, or clinical presentation suggestive of subarachnoid hemorrhage, even if the initial CT scan was normal; the patient was a candidate for intravenous or intra-arterial administration of tissue-type plasminogen activator or other thrombolytic therapy for treatment of the acute ischemic stroke, and tissue plasminogen activator or other thrombolytic therapy was administered; the patient had a seizure at stroke onset; serum blood glucose was >400 mg/dL (22 mmol/L) or <40 mg/dL (2.2 mmol/L); the patient had sustained hypertension (defined during the baseline period by 2 readings occurring 30 minutes apart with systolic blood pressure >185 mm Hg or diastolic blood pressure >110 mm Hg) at time of treatment or need for aggressive treatment for blood pressure reduction; there was sustained hypotension (defined as systolic blood pressure <80 mm Hg, or diastolic blood pressure <50 mm Hg); there was presumed septic embolus; the patient had known hereditary or acquired hemorrhagic diathesis, eg, activated partial thromboplastin time or prothrombin time greater than normal, unsupported coagulation factor deficiency, or oral anticoagulant therapy with the prothrombin time greater than normal; the patient had a skin condition (ie, hemangioma, scleroderma, psoriasis, rash, or open wound) at the site chosen for infrared energy application; the patient was previously enrolled in or had participated in another investigational drug or device trial within the preceding 4 weeks; if a new medication was started within 14 days before the screening visit; the participant had severe mental deficit, severe...
neurological deficit or disorder (dementia, multi-infarct dementia, advanced multiple sclerosis) which would interfere with the assessment of the patient’s ability for independent functioning; there was evidence of any disorder other than stroke that, in the opinion of the investigator, could be considered serious or life threatening such as active serious infections, pneumonia, pulmonary emboli, or gastrointestinal bleeding; the patient had unstable cardiac arrhythmias or other cardiac illness that, in the opinion of the investigator, was life threatening; the patient was of child bearing potential; the patient was comatose or moribund level of consciousness; or the patient was otherwise determined by the investigator to be medically unsuitable for participation in this study.

Study Groups, Evaluation Measures, and Baseline Factors
All patients received standard medical management therapy for acute ischemic stroke. In addition, they all underwent an identical NTS procedure. A randomization code that was preprogrammed within the NeuroThera Laser System determined whether the treatment was active or sham (placebo). Both patients and clinicians were blinded regarding treatment arm. The National Institutes of Health Stroke Scale (NIHSS) was assessed at the time of screening for entry into the study and again immediately before randomization to treatment group. Outcome measures (NIHSS, modified Rankin Scale [mRS], Barthel Index, and Glasgow Outcome Scale) were determined at 30, 60, and 90 days. Neurological scores and clinical data were collected on standard case report forms at each visit by trained investigators. Baseline factors including patient demographics, time to treatment, medical history, vital signs, and routine laboratory values were collected. Factors also included age, sex, time from stroke onset to arrival at hospital, time from stroke onset to treatment, and a complete medical history.

After completion of the NTS procedure, patients entered the study follow-up phase until one of the following occurred: the patient decided to stop participation in the study; the sponsor or ethics committee/applicable regulatory body terminated the study; the investigator decided to discontinue the patient or site participation in the study; or the patient had participated in the study for 90 or 10 days.

The NTS Treatment Device
The NTS is an investigational device that is intended to provide noninvasive, transcranial laser treatment to patients diagnosed with acute ischemic stroke. The laser wavelength of 808 nm is in the near-infrared portion of the electromagnetic spectrum, and is invisible to the naked eye. Energy in the near-infrared spectrum is nonionizing and is not associated with the risks of ionizing radiation. The NTS device consists of a class IV laser system and delivers energy via a fiber optic cable to a handheld probe that is placed on the shaved head of the patient by a trained operator. The device is portable and is similar in size to portable ultrasound equipment.

The NTS is manufactured by PhotoThera, Inc. A complete treatment regimen consists of removing hair from the patient’s scalp, followed by NTS application (active treatment or sham/control treatment) on 20 predetermined locations on the scalp for 2 minutes at each site. The predetermined sites are identified by a cap which is placed on the patients head. The system is designed to deliver ~1 Joule/cm² of energy over the entire surface of the cortex regardless of stroke location. The sham procedure is identical to the active procedure with the exception that no laser energy is delivered to the patient from the device.

Based on current knowledge of the technology and risk assessment analysis, the most significant known hazard with NTS treatment is potential retinal damage if the beam enters through the lens of the eye and onto the retina. Other potential hazards include skin burns and cuts to the scalp from shaving the head. Skin burns could occur if the device is not used as intended (eg, repeated treatments at the same location).

Statistical Methods
Effectiveness outcomes were reported on an intention-to-treat basis and include all 120 patients randomized to both arms. Safety outcomes were based on the same 120 patients, who also comprised all patients who received any treatment.

Patients were evaluated at baseline, 30, 60, and 90 days after baseline. Analysis focused largely on the 90-day evaluations. The NIHSS was the prospectively identified primary outcome, and the mRS, Glasgow Outcome Scale and Barthel Index scores were secondary outcomes.

Categories of baseline values of the NIHSS score and of time from stroke onset to treatment were entered into the analyses as strata or covariates. The three NIHSS strata were 7 to 10, 11 to 15, and 16 to 22. The categories for time from stroke onset to treatment were “less than 12 hours” and “12 to 24 hours.” The NIHSS scale is not an interval scale. Therefore, we used categories of the NIHSS score to reduce potential heterogeneity.

NIHSS outcome was collapsed into a binary outcome, bNIH, where ‘success’ could occur in either of 2 ways: as a 90-day NIHSS score 0 to 1 or as a decrease in score (change) of 9 or more points from baseline to 90 days.19

The mRS 90-day outcome took 2 forms. The 7-category ordinal variable form, analyzed across the whole distribution of scores on the 0 to 6 mRS scale (full mRS), and a binary mRS that makes scores of 0 to 2 as positive (success) and scores of 3 to 6 as negative (failure).

The full mRS (“shift in Rankin”), binary mRS and bNIH outcomes were tested using a stratified Cochran-Mantel-Haenszel (CMH) test: namely, the van Elteren test. The test uses the modified ridit score and thereby is a direct extension of the 2-sample Wilcoxon test. For the bNIH and the binary mRS outcomes, logistic regression analyses were used to explore the effects of covariates and the random effect of site: in particular, to assess how adding these factors altered the estimate of treatment effect.

The analyses were carried out in SAS version 9 using PROC FREQ to obtain the results for the van Elteren CMH test, and using PROC GENMOD and PROC LOGISTIC to obtain results for logistic regression analyses with and without medical center as a random effect. Prevalence odds ratios were obtained from PROC GENMOD.

This study was an exploratory trial rather than a confirmatory trial, in the sense of FDA/ICH E9 Guidance on General Considerations for Clinical Trials and FDA/ICH E9 Guidance on Statistical Principles for Clinical Trials. Primary safety and effectiveness outcome measures and their analysis were identified prospectively. Multiple secondary and exploratory analyses were defined in the protocol or were designed and performed after study completion and unblinding. No corrections were made for multiple comparisons.

Results
The study enrolled 122 eligible adult patients, between ages 40 and 85 of any ethnic background diagnosed with acute ischemic stroke within 24 hours of onset who provided their written informed consent. Two patients withdrew before randomization and are not included in any analyses, leaving 120 patients in the effectiveness analysis. Of the 120 patients, 79 were randomized to the active treatment group and 41 were randomized to the sham control group (see Figure 1; disposition of patients in the study). There was only 1 patient lost to follow-up (0.8%). No significant differences in baseline characteristics were observed (see Table 1; baseline demographics and other baseline characteristics). Study data were reviewed by independent data monitoring committees in each country; there were no serious device-related adverse effects reported.

Effectiveness Analysis
The proportion of patients who received active treatment and had a positive bNIH outcome was 70%, which is greater than
the proportion who received sham control treatment with a positive bNIH outcome (51%; CMH test \(P=0.035 \) stratified by severity and time from stroke onset to treatment; \(P=0.048 \) stratified only by severity). The treatment effect remained significant with other choices of strata for the CMH analysis. Logistic regression analyses confirmed that the results held controlling for both fixed covariates (eg, age, sex, time-to-treatment, baseline severity, previous stroke) and the random effects of medical site. Controlling only for baseline severity the logistic regression gave a prevalence odds ratio favoring treatment of 1.40 (95% CI, 1.01 to 1.93). Among the 79 treated patients, 38% achieved both a final NIHSS score of 0 to 1 and improved by \(\geq 9 \) points, 20% had only a \(\geq 9 \)-point improvement, 11% obtained a final score of 0 to 1 without improving by \(\geq 9 \), and 30% achieved neither end point.

Among the 41 control patients the corresponding proportions were 29%, 7%, 15%, and 49%.

Differences in mean NIHSS scores between the treatment groups appeared soon after treatment and were apparent throughout the 90-day study period (Figure 2). Patients in the active treatment group showed greater improvement in the change in NIHSS scores from baseline to day 90, as compared with the sham control group (\(P=0.021 \), CMH test stratified by time to treatment).

For the binary mRS outcome (0 to 2 versus 3 to 6), a similar pattern of significance held. The proportion of patients who received active treatment and had a positive binary mRS outcome was 60%, which is greater than the proportion who received sham control treatment with a positive binary mRS outcome (44%; CMH test \(P=0.034 \) stratified by severity and time to treatment; \(P=0.043 \) stratified only by severity). Only the CMH test without strata was not significant (\(P=0.11 \) \(\chi^2 \) test). The rate of positive results markedly varies across the baseline severity strata. Controlling only for baseline severity, logistic regression gave prevalence odds ratios favoring treatment of 1.38 (95% CI, 1.03 to 1.83) for the binary mRS outcome.

The effect of the NTS when compared with sham treatments with respect to the score on the full mRS at 90 days or the last rating, analyzed across the whole distribution of scores on the 0 to 6 mRS scale was significant, with the use of the Cochran–Mantel–Haentzel nonparametric rank test, stratified by categories of (1) baseline NIHSS score and time to treatment (\(P=0.020 \)) and (2) baseline NIHSS score only (\(P=0.026 \); see Table 2).

Differences between the treatment groups in mean mRS scores also appeared soon after treatment and were apparent throughout the study period (Figure 3).

Stratification by baseline severity gave similar results for the 3 outcomes (bNIH, binary mRS, and full mRS); all 3 outcomes had significance levels <0.05 (see Table 3; 2-sided significance levels for the van Elteren CMH test). When also controlled for time-to-treatment (0 to 12 hours versus 12 to 24 hours) little significance is gained. However, in a trial with a larger sample size, time-to-treatment would be expected to have a stronger association with outcome.

Results of analyses using the Glasgow Outcome Scale and Barthel Index are similar to those for the NIHSS and the

TABLE 1. Baseline Demographics and Other Baseline Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Active Treatment (NTS), n=79</th>
<th>Placebo (sham control), n=41</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age, y</td>
<td>70.2</td>
<td>68.5</td>
</tr>
<tr>
<td>Female, No. (%)</td>
<td>36 (45.6%)</td>
<td>15 (36.6%)</td>
</tr>
<tr>
<td>Ethnicity, No. (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>29 (36.7%)</td>
<td>17 (41.5%)</td>
</tr>
<tr>
<td>Black</td>
<td>2 (2.5%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>4 (5.1%)</td>
<td>2 (4.9%)</td>
</tr>
<tr>
<td>Other*</td>
<td>44 (55.7%)</td>
<td>22 (53.7%)</td>
</tr>
<tr>
<td>Median time to treatment, h</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>Mean time to treatment, hr:min</td>
<td>16:56</td>
<td>16:20</td>
</tr>
<tr>
<td>Minimum, hr:min</td>
<td>02:00</td>
<td>04:05</td>
</tr>
<tr>
<td>Maximum, hr:min</td>
<td>23:56</td>
<td>23:22</td>
</tr>
<tr>
<td>Median NIHSS score at entry</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>First quartile</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Third quartile</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>History, No. (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>44 (55.7%)</td>
<td>20 (48.8%)</td>
</tr>
<tr>
<td>Previous stroke</td>
<td>17 (21.5%)</td>
<td>12 (29.3%)</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>20 (25.3%)</td>
<td>9 (22.0%)</td>
</tr>
</tbody>
</table>

Largely Mestizo and Native American Indians.
mRS. Patients who received active treatment had better outcomes than patients who received sham control treatment as measured on the Glasgow Outcome Scale (CMH test \(P = 0.056 \)), and the Barthel Index scale (CMH test \(P = 0.035 \)), stratified by baseline NIHSS score and time to treatment.

The logistic regression analyses indicated the negligible effects of covariate adjustment on the logistic regression coefficient for treatment. The results in Table 4 indicate that the treatment effect is stable across 2 binary outcomes and across 3 different nested sets of covariates. In fact, the treatment effect tends to increase as covariates are added. Furthermore, treating hospital site as a repeated measures effect virtually does not alter the logistic regression coefficient for treatment. The 95% CIs are not shown to focus on the consistency of the regression coefficients. In all but one model the probability value for treatment is \(P < 0.05 \). In the models with the bNIH outcome, the covariate ‘severity’ is not significant and time-to-treatment is significant only once with \(P = 0.0496 \). However, with the binary mRS outcome, the covariate ‘severity’ is significant with \(P < 0.001 \) in all 3 models. This indicates that the 9-point decrease in the NIHSS score captures the variation of treatment effect across the baseline severity categories. We explored many sets of additional covariates and found that after including the covariates ‘gender’, ‘age’, and ‘prior stroke’ all other covariates had negligible predictive value. Gender was significant in the binary mRS model with \(P < 0.01 \). Otherwise, these factors did not achieve statistical significance (see Table 4).

Safety Analysis

Table 5 (mortality rates and SAEs) shows the mortality rates and SAEs by treatment group and totals. No significant difference in mortality between the active treatment group and the sham control group is evident. Table 5 shows the number of patients with serious adverse events, worsening of underlying disease, cardiovascular SAEs, infection, or central nervous system SAEs, in total and by treatment group. These data indicate that there were no significant differences between the treatment groups with respect to these measures. Where there was a trend toward differences between the treatment groups, such as in rates of infection or rates of central nervous system SAEs, the patients receiving active treatment appear to have had better outcomes than patients receiving sham control treatment.

Discussion

The NEST-1 trial provides initial evidence on the safety and effectiveness of infrared laser therapy for the treatment of ischemic stroke in humans within 24 hours of stroke onset. The outcome variable scales used in the NEST-1 study had excellent correlation: \(R = 0.79 \) to 0.92. The correlation coefficients for the NEST-1 trial are essentially the same as those reported in the article by Lyden and colleagues reviewing tissue plasminogen activator data.\(^20\) That is, the outcome variables have correlation coefficients with each other of \(\approx 0.8 \) (absolute value) or higher. This concordance with prior studies is evidence that the outcomes are being measured appropriately and consistently.

The results suggest that infrared laser therapy may benefit a broad spectrum of stroke patients without increasing the rate of adverse events. Furthermore, the relatively large magnitude of the effect implies that a phase III trial should not require a substantial number of subjects.

Patients receiving active treatment had a higher proportion of positive NIHSS outcomes than did patients receiving sham control treatment. Results were similar using the other neurological outcome scales. No significant differences between the treatment groups were observed in rates of mortality or SAEs, but the sample size (\(n = 120 \)) gives low power to detect small differences. Where there is a trend toward differences between the treatment groups, patients receiving active treatment appeared to have had fewer SAEs than did patients receiving sham control treatment. The safety profile of the

TABLE 2. Frequencies by Treatment of 90-Day mRS Scores

<table>
<thead>
<tr>
<th>mRS</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>5</td>
<td>10</td>
<td>3</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>41</td>
</tr>
<tr>
<td>%</td>
<td>12.20</td>
<td>24.39</td>
<td>7.32</td>
<td>19.51</td>
<td>14.63</td>
<td>12.20</td>
<td>9.75</td>
<td>100</td>
</tr>
<tr>
<td>Active</td>
<td>12</td>
<td>25</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>2</td>
<td>7</td>
<td>79</td>
</tr>
<tr>
<td>%</td>
<td>15.19</td>
<td>31.65</td>
<td>12.66</td>
<td>13.92</td>
<td>15.19</td>
<td>2.53</td>
<td>8.86</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>35</td>
<td>13</td>
<td>19</td>
<td>18</td>
<td>7</td>
<td>11</td>
<td>120</td>
</tr>
</tbody>
</table>

TABLE 3. Two-Sided Significance Levels for the van Elteren CMH Test

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Stratified by Severity Only</th>
<th>Stratified by Severity and Time-to-Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary_NIH</td>
<td>0.048</td>
<td>0.035</td>
</tr>
<tr>
<td>Binary_mRS</td>
<td>0.043</td>
<td>0.034</td>
</tr>
<tr>
<td>Full mRS</td>
<td>0.026</td>
<td>0.020</td>
</tr>
</tbody>
</table>
measures effect.

for logistic regression with the factor "site" included as a repeated

covariates in model

approaches to the same hypothesis: some having an mRS

raises the concern of type 1 error. We described several

success. But our presentation of several analytic approaches

with a primary outcome of bNIH, the binary form of NIHSS

technologies.

clinicians. The full mRS analysis takes into consideration the

outcome measure when consistently implemented by trained

Rankin scores, from 0 to 6. The mRS is a simple and reliable

exceeding 1.38 for the binary mRS outcome.

favoring treatment exceeding 1.40 for the bNIH outcome and

test and by logistic regression gave prevalence odds ratios

Controlling for baseline severity, the analyses by the CMH

results based on the 2 binary outcomes closely agreed.

Thus, once the analysis controlled for baseline severity, the

mRS outcome does not account for change from baseline.

suggests a global potential benefit. In contrast, the binary

variation in baseline severity (from NIHSS score 7 to 22) and

therapeutic procedure.

were no adverse outcomes that can be attributed to the laser

therapeutic procedure.

The bNIH outcome with the 9-point change incorporates

variation in baseline severity (from NIHSS score 7 to 22) and

suggests a global potential benefit. In contrast, the binary

mRS outcome does not account for change from baseline.

Thus, once the analysis controlled for baseline severity, the

results based on the 2 binary outcomes closely agreed.

Controlling for baseline severity, the analyses by the CMH
test and by logistic regression gave prevalence odds ratios

favoring treatment exceeding 1.40 for the bNIH outcome and

exceeding 1.38 for the binary mRS outcome.

This global potential benefit is also demonstrated through

the full mRS, analyzed across the entire distribution of

Rankin scores, from 0 to 6. The mRS is a simple and reliable

outcome measure when consistently implemented by trained

clinicians. The full mRS analysis takes into consideration the

entire spectrum of the patient outcomes. As a result, the full

mRS is increasingly considered as a primary outcome mea-

sure for ischemic stroke trials involving neuroprotective

technologies.

This exploratory study had a prespecified analytic plan

with a primary outcome of bNIH, the binary form of NIHSS

that regards a final score of 0 to 1 or a 9-point decrease as a

success. But our presentation of several analytic approaches

raises the concern of type 1 error. We described several

approaches to the same hypothesis: some having an mRS

outcome, some having an NIHSS outcome, and some using

logistic regression to confirm the nonparametric results.

These results showed the substantial concordance among

these outcomes and methods. Also, they showed that after

control for NIHSS baseline severity, other factors had little or

no effect on the magnitude of the treatment effect. Hence,

we did not present a multiple comparisons correction such as

the Bonferroni correction because, in particular, the Bonferroni

correction assumes that the hypotheses are independent of

one another. Another reason for the various analyses was to

associate an effect size with the results of the primary analysis

by the nonparametric CMH test. We obtained simple esti-
mates of effect size from the other tests and reported both

the simple proportions of success for the binary outcomes

and prevalence odds ratios obtained from logistic regression.

An extended treatment window of up to 24 hours after

stroke onset will have a number of implications. Thrombo-

lytics have a proven treatment window of 3 hours, although

it may be that effectiveness for this form of therapy extends

out somewhat further.

The first neuroprotective trial to show efficacy was the

study of NXY-059. That study had a 6-hour treatment

window, but a majority of patients were treated within 4

hours. It is a reasonable contention that the reason the

NXY-059 study was successful, whereas all the previous

neuroprotective therapies were not, was that the average time
to treatment was kept so low. NEST-1 had a 24-hour
treatment window and a much longer time to treatment

(median 18 hours) than nearly all other clinical trials to date

date for the treatment of acute ischemic stroke. A major problem

for treatment of strokes has been that large numbers of

patients present after 6 hours. Therefore, an expanded treat-

ment window of 24 hours would make it possible to treat

many more ischemic stroke victims.

Although the mechanism of action of infrared laser therapy

for stroke is not completely understood, a number of effects

of this type of irradiation have been documented. Infrared

laser therapy is a physical process that can produce biochem-

ical changes at the tissue level. The putative mechanism for

NTS treatment involves stimulation of ATP formation by

mitochondria and may also involve prevention of apoptosis in

the ischemic penumbra and enhancement of neurorecovery

mechanisms. An example of another physical process that

many more ischemic stroke victims.

Although the mechanism of action of infrared laser therapy

for stroke is not completely understood, a number of effects

of this type of irradiation have been documented. Infrared

laser therapy is a physical process that can produce biochem-

ical changes at the tissue level. The putative mechanism for

NTS treatment involves stimulation of ATP formation by

mitochondria and may also involve prevention of apoptosis in

the ischemic penumbra and enhancement of neurorecovery

mechanisms. An example of another physical process that

reduces neurological damage is hypothermia. In animal

model studies, there are few, if any therapies, that have been

shown as consistently to reduce stroke-related damage as

hypothermia. What is clear is that infrared irradiation is

TABLE 4. Logistic Regression Coefficients for Treatment

Effect

<table>
<thead>
<tr>
<th>Covariates in Model</th>
<th>Outcome bNIH TX Coefficient and (P values)*</th>
<th>Outcome Binary mRS TX Coefficient and (P values)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severity</td>
<td>0.82 (0.046) 0.92 (0.044)</td>
<td></td>
</tr>
<tr>
<td>Severity and time-to-tx</td>
<td>0.89 (0.034) 1.03 (0.027)</td>
<td></td>
</tr>
<tr>
<td>Severity, time-to-tx, gender, age, prior stroke</td>
<td>0.99 (0.027) 1.43 (0.009)</td>
<td></td>
</tr>
</tbody>
</table>

Results for 2 sets of nested multivariate models, 1 set of models with outcome bNIH and 1 set of models with outcome binary mRS (time-to-tx indicates time from onset to treatment).

*The first P value is for simple logistic regression and the second P value is for logistic regression with the factor "site" included as a repeated measures effect.

TABLE 5. Mortality Rates and SAEs by Treatment Group and in Total

<table>
<thead>
<tr>
<th>No. of Patients with:</th>
<th>Total, n=120</th>
<th>Percent</th>
<th>Active, n=79</th>
<th>Percent</th>
<th>Sham, n=41</th>
<th>Percent</th>
<th>Fisher Exact, P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality (all sites)</td>
<td>11</td>
<td>9.2%</td>
<td>7</td>
<td>8.9%</td>
<td>4</td>
<td>9.8%</td>
<td>0.87</td>
</tr>
<tr>
<td>SAEs</td>
<td>35</td>
<td>29.2%</td>
<td>20</td>
<td>25.3%</td>
<td>15</td>
<td>36.6%</td>
<td>0.211</td>
</tr>
<tr>
<td>Worsening of underlying disease</td>
<td>8</td>
<td>6.7%</td>
<td>3</td>
<td>3.8%</td>
<td>5</td>
<td>12.2%</td>
<td>0.120</td>
</tr>
<tr>
<td>CVS</td>
<td>8</td>
<td>6.7%</td>
<td>5</td>
<td>6.3%</td>
<td>3</td>
<td>7.3%</td>
<td>1.000</td>
</tr>
<tr>
<td>Infection</td>
<td>13</td>
<td>10.8%</td>
<td>5</td>
<td>6.3%</td>
<td>8</td>
<td>19.5%</td>
<td>0.059</td>
</tr>
<tr>
<td>CNS</td>
<td>14</td>
<td>11.7%</td>
<td>6</td>
<td>7.6%</td>
<td>8</td>
<td>19.5%</td>
<td>0.072</td>
</tr>
</tbody>
</table>
probably delivering its effect independent of restoration of blood flow and the mechanism is probably related to an improved energy metabolism and enhanced cell viability.5,14

Other advantages of this form of therapy are that treatment can be started rapidly, without any need for preliminary laboratory testing, invasive procedures, or extensive training of the clinicians who administer the treatment. Furthermore, it is not necessary to know the location of the vascular occlusion to administer the NTS treatment. Thus, this form of therapy is likely to require much less infrastructure than virtually all other types of devices and medical therapies available to date for acute stroke treatment or clot removal.

Conclusion

Although the the NEST-1 study results are encouraging, and may indicate that infrared laser therapy has potential to become a treatment of ischemic stroke in humans when initiated within 24 hours of stroke onset, a larger confirmatory trial to demonstrate safety and effectiveness is warranted.

Acknowledgments

Author Contributions: Provision of study materials or patients, analysis and interpretation of the data, writing the article (Y.L.); conception and design, critical revision of the article for important intellectual content, final approval of the article (J.Z.); conception and design, critical revision of the article for important intellectual content, final approval of the article (M.F.); statistical expertise, analysis and interpretation of the data, writing the article, final approval of the article (R.L.); provision of study materials or patients, analysis and interpretation of the data, writing the article (L.W.); conception and design, analysis and interpretation of the data, writing the article (J.P.); provision of study materials or patients, analysis and interpretation of the data, writing the article (C.C.); conception and design, writing the article, analysis and interpretation of the data, writing the article (J.Z.); conception and design, critical revision of the article for important intellectual content, final approval of the article (S.I.); conception and design, writing the article, analysis and interpretation of the data, writing the article (M.F.); statistical expertise, intellectual content, final approval of the article (J.Z.); conception and design, critical revision of the article for important intellectual content, final approval of the article (Y.L.);

The authors wish to acknowledge the following contributors: Julio Pérez, Peru; América Maldonado Pérez, Peru; Javier Huamani, Peru; César Caparó Gómez, Peru; Hernán Delgado Vial, Peru; Victor Fernández Macedo, Peru; Martín Flor Deza, Peru; César Caparó Zamalloa, Peru; Jackson Streeter, USA-PhotoThera; Thera; Steve Richieri, USA-PhotoThera; Luis DeTaboada, USA-PhotoThera; Mario Shi, USA-PhotoThera; Michael Walker, USA; Ulrika Jenving, Sweden; Claes-Goran Anderson, Sweden; Kristina Andersson, Sweden; Lina Bokemark, Sweden; Lars Dahl, Sweden; Lena Peterson, Sweden.

Sources of Funding

Funding for the study was provided by PhotoThera, Inc.

Disclosures

U.O. and S.I. are employed with PhotoThera; M.F. has equity stake in the company and has received honoraria; J.Z. has equity stake in the company. All other authors report no conflicts of interest.

References