Michael H. Weber

New Methods and Laser Technology in Photodynamic Cancer Therapy

Topics

- Basics of mechanism of photodynamic therapy
- Different groups of photosensitizers
- PDT in dermatology with 5-Aminolaevulic acid
- PDT in combination with interstital and intravenous laser therapy
- Treatment examples and results
- New combinations of traditional photosensitizers with light sensitive chemodrugs and clinical results
- Immunotherapy for cancer

LASER

Light Amplification of Stimulated Emission of Radiation

Why Laserlight?

Laserlight

has a precise colour (Monochromasy) and is chracterized by an arranged photon stream (Coherence)

(a)

Conventional white light (bulb)

is a mixture of all colours, spreads in all directions

The electromagnetic spectrum

Fiberoptic laser systems and applications

Modern new fiberoptic Laser-Needle system for external laser therapy

Modern new Laser-Needle system for external laser therapy

Laserneedles (non-invasive)

Intravenous laser therapy

Interstitial photodynamic cancer therapy

Absorption of laser light in biological tissue

Optical penetration depth of different wavelengths

depends upon the wavelength

Tissue penetration of blue laser very low, green laser ca. 5mm, red 3 cm, infrared 6 cm

Bone penetration of infrared laser

Bild 8: Rotes Laserlicht wird im Gewebe gestreut, teilweise absorbiert, aber auch an absorbierenden Strukturen (Knochen) vorbeigeleitet. Hier wird ein Finger von einem 250 mW starken roten Laser (660 nm), und einem 400 mW starken IR Laser (830 nm) bestrahlt. In der Handfläche ist kaum rote, wohl aber etwas IR Transmission sichtbar. Mit einem empfindlichen Messgerät liegt eine jeweilig emittierte Leistung bei etwa 0,002 mW/mm² (Finger rot), 0,012 mW/mm² (Finger IR), 0,0001 mW/mm² (Hand rot) und 0,0004 mW/mm² (Hand IR). Die IR Bilder sind mit einer Sony HDR-SR1E im (unbeleuchteten) Night-Shot Modus aufgenommen, die roten Bilder auch mit einer Sony DSC-H1. Hier erscheint elektronisch bedingt ein besonders helles rotes Licht orange bis gelblich.

Which properties of real PT lasers are important? EMLA Laser Helsinki 24.8.2008, page 1. © 13M, Dr. Hans A. Romberg, Schillerstr. 44, D 76297 Stutensee

Laser and brain (Litscher 2013)

Transcranial infrared laser therapy

Interstitial fiberoptic laser therapy

Fiber-optic interstitial needle

Intravenous Laser Blood Irradiation

Intravenous laser therapy

Intravenous laser therapy with red and green laser

Intravenous laser therapy with blue and yellow laser

New Y-cannula for intravenous laser therapy

Weberneedle 12-channel modular Endolaser system

Effects of intravenous laser blood irradiation on mitochondria

Figure 5.15 Electron micrograph of a section through an irradiated (632.8 nm, 56 J/m³) human lymphocyte. The experimental details are described by Manteifel et al., 1997. The arrow points to the ring-shaped nutochondrial profile that belongs to the giant mitochondrion (B) presented in Fig.5.14b.

"Giant-mitochondria" in human lymphocytes after laser irradiation (632 nm) Ring-shaped mitochondria in human lymphocytes after laser irradiation (632nm)

Increased ATP production

ATP-Increase under laser irradiation (632 nm, red light) of a HeLa cell-culture

Immunological effects of iv-Laser

Activation of macrophages in fluorescent light

Photodynamic therapy: new ways of cancer with lasers and photosensitizers

Photodynamic therapy (PDT)

- Photodynamic therapy is one of the most interesting and promising approaches in the treatment of various cancers.
- The principle is the stimulation of a light sensitive drug which is injected into the blood and accumulates in cancer cells
- Tumor tissue is subsequently destroyed by irradiation with light of appropriate wavelength according to the absorption spectra of the various photosensitizers
- The basic principle behind this mechanism is the development of radical oxygen species.

Photodynamic therapy (PDT)

- However up to today PDT was limited to cancer treatment of superficial tumors
- Because we are not able to bring the laser beam in a sufficiant concentration deeper into the body.

Introduction: Process of Photodynamic Therapy

- 2 individually non-toxic components brought together to cause harmful effects on cells and tissues
 - Photosensitizing agent
 Light of specific
 wavelength

Photodynamic Therapy

Mechanisms of PDT

Mechanisms of PDT

- Selective targeting of tumor cells
- Minimal side effects
- No resistance after repeated treatments
- Tumor vascular shutdown by thrombosis and haemorrhages
- Induction of local inflammation
- Immune activation

The photodymamic reaction

Light distribution and cellular response during PDT
Immunological effects of PDT

Photosensitizers

Traditional Photosensitizers (porphyrin derived)

- Haematoporphyrins, HpD
 - Derivatives of Haem
 - (Photofrine and others)
- Chlorines
 - Derivatives of Chlorophyll
- Porphycenes
 - Synthetic Porphyrines

Photodynamic Therapy traditional Photosensitizers

Table 1 Currently available photosensitizers.

Platform	Drug	Substance	Manufacturer	Web site
Porphyrin	Photofrin®	HpD	Axcan Pharma, Inc.	www.axcan.com
Porphyrin	Levulan®	ALA	DUSA Pharmaceuticals, Inc.	www.dusapharma.com
Porphyrin	Metvix®	M-ALA	PhotoCure ASA	www.photocure.com
Porphyrin	Visudyne [®]	Vertiporfin	Novartis Pharmaceuticals	www.visudyne.com
Texaphyrin	Antrin®	Lutexaphyrin	Pharmacylics	www.pharmacyclics.com
Chlorin	Foscan®	Temoporfin	Biolitec Pharma Ltd.	www.bioletcpharma.com
Chlorin	LS11	Talaporfin	Light Science	www.lightsciences.com
Chlorin	Photochlor	HPPH	RPCI	www.roswellpark.org
Dye	Photosens®	Phthalocyanine	General Physics Institute	www.gpi.ru

Photodynamic Therapy Treatment indications (all superficial)

Photosensitizer	Type of diseases	Country	
(5-ALA)	Actinic keratosis,	tosis, reinoma U.S., EU	
5-aminolevulinate	Basal cell carcinoma		
Photofrin	Barrett's displasia	U.S., Canada, EU, UK	
Photofrin	Cervical cancer	Japan	
Photofrin	Endobronchial cancer	Canada, Most EU Countries, Japan, U.S.	
Photofrin	Esophageal cancer	Canada, Most EU Countries, Japan, U.S.	
Photofrin	Gastric cancer	Japan	
Photofrin	Papillary bladder cancer	Canada	
Foscan	Head and neck cancer	EU, Norway, Iceland	
Verteporfin	Age-related Macular Degeneration	Canada, Most EU Countries, Japan, U.S.	

Photosensitizers approved for therapy

Photodynamic Therapy New natural derived Photosensitizers

- Chlorin E6 (Red 660 nm)
- Indocyaninegreen (Infrared 810 nm)
- Hypericin (Yellow 589 nm)
- Curcumin (Blue 447 nm)
- Riboflavin (Blue 447 nm)

Photodynamic Therapy: new chemodrug derived Photosensitizers

- Doxorubicin, liposomal (447 nm, blue)
- Mitoxantron, (yellow 589nm, red 632nm)
- Paclitaxel, (ultraviolett, 345 nm)
- Cisplatin, (ultraviolett, 345 nm)
- 5-FU, (ultraviolett, 345nm)

Topical photosensitizer (Creme) 5-Aminolevulinic acid, 5-ALA, (Hematoporphyrin derivative)

Photodynamic Therapy

Absorption spectrum of 5-ALA

Photodynamic diagnostics PDD

(Fluorescense diagnostic with blue laser)

Fuselage skin basal cell carcinoma in daylight

Fuselage skin basal cell carcinoma under wood light

Photodynamic therapy of actinic keratosis

Photodynamische Therapie von Basaliomen und aktinischen Keratosen

Photodynamic therapy of basal cell carcinoma

Photodynamic therapy of basal cell carcinoma

Photodynamic therapy of basal cell carcinoma

Ulcerated basal cell carcinoma before treatment

Findings after 1 treatment PDT

Systemic photodynamic therapy

Fotolone (Chlorin E6)

- Chlorin e6 as photosensitizer
- Indications
- current development status

Chlorin E6 (chemical properties)

- trisodium salt of the "green" porphyrin
- high solubility in water
- Molecular formula: C₃₄H₃₃N₄Na₃O
- High stability of the lyophilized API

Production of Chlorin E6

Natural sources (algae, grass, lucerne etc.)

FDA approved, GAP

inexhaustible availability (different sources/world-market)

Production of Chlorin E6

Absorption spectrum of Chlorin E6

Generation of singlet oxygen

24 – 48 h

- Apoptosis/
 Necrosis
- Elimination
 of Ce6 from blood

Problem of all porhyrin derived photosensitizers: limited penetration depth with red laser and tumor size

The body shower for superficial tumors with external irradiation

Insertion of laser-needles with different wavelengths into a special shower head

External PDT of lymph metastases

Potential overdosing with skin burn

Interstitial PDT of lymph metastases

Interstitial PDT of lymph metastases

Interstitial PDT of squamous cell carcinoma

Mouth bottom cancer with lymph nodes

Interstitial laser therapy of neck lymph nodes

Interstitial PDT for neck lymph nodes

Interstitial PDT for thyroid cancer

Interstitial PDT of breast cancer with mediastinal lymph metastases

Interstitial PDT of breast cancer with mediastinal lymph metastases

Interstital therapy for mediatinal metastases

Lung cancer (needles on pleura)

Interstitial PDT of breast cancer

Interstitial breast cancer treatment

Interstital PDT of breast cancer

Interstital PDT of breast cancer

Interstital PDT of breast cancer

Interstitial PDT for pancreatic cancer

Peritoneal carcinosis

Case report: ovarian cancer with peritoneal carcinosis

Liver metastases

PDT in Urology

PDT in urology

Fiberoptic catheter with circular irradiation (for prostate cancer)

New catheter for bladder and prostate cancer

500 mW Red laser 658 nm

Fiberoptic catheter with spheric irradiation for bladder cancer

Bladder Cancer

Bladder cancer PET 10/2014 before treatment

Bladder cancer 2/2015 after PDT

The big problems still remain:

- Limited succes by using red laser only
- Limited penetration depth (max. 2,5 cm)
- Limited tumor size: max 2,5 cm
- Burning and ulceration with overdosage
- Light sensitivity
- No good success with liver metastases
- Limited success for bone metastases
- No success in treatment of brain tumors

The solution: liposmal Indocyanine Green

- Indocyanine Green is a fluorecent green dye and absorbs light in the infrared range (810 nm)
- It is applied intravenously
- Indocyanine Green is an approved drug used for fluorescense diagnostics (blood flow in eyes, liver heart) even FDA approved in the USA

Indocyanine Green liposomal as a new photosensitizer

- Pure Indocyanine Green binds to plasma proteins and is removed from the body in about 30 minutes and cannot be used as photosensitizer
- In liposomale form however it will be in integrated in tumor cells and can so be used for PDT with infrared laser
Indocyanine Green, chemical structure

Indocyanine Green, absorption spectrum

Indocyanine Green as photosensitizer

A new option for improved tumor targeting and uptake is the formulation of ICG in nanopartikels like liposomes.

Nanoparticles for transport of photosensitizers

Cellular integration of a lipophile photosensitizer

Selektive "Over-heating" of tumor tissue by infrared stimulated Indocyanine Green

- ICG absorbs infrared light 810 nm.
- Infrared light has the highest penetration depth in the tissue.
 Besides activation of the ICG with production of singlet
 oxygen tumor tissue will be warmed up
 - (overheating effect) and so supports the photodynamic reaction without damage of surrounding healthy tissue.
- The combination of overheating and PDT leads to an improved reaction with ,,tumor melting",
- We can call it **"Photothermodynamic therapy** (**PTDT**)" or **"Photothermoablation**" of tumor tissue. ^[21]

Indozyanine green liposomal

Indozyanine green liposomal

Lip-ICG-PDT: Rectal Cancer

Lip-ICG-PDT: Rectal Cancer

Lip-ICG-PDT, Rectal Cancer

Lip-ICG-PDT: Rectal Cancer

Larynx cancer, spreading in the neck

Larynx cancer

Larynx cancer

Other natural

photosensitizers

St. John's wart plant

Hypericin as photosensitizer in combination with yellow laser therapy

Interstitial PDT of breast cancer

Curcumin as photosensitizer

Curcuma powder

Curcumin

Curcumin

Interstitial PDT combination after Hypericin and Curcumin

Absorption spectra of different phtotosensitizers

- Chlorin E 6 absorbs
 660 nm red laser
- Indocyanine Green absorbs 810 nm infrared laser
- Hypericin absorbs
- Curcurmin absorbs
- Riboflavin absorbs

589 nm yellow laser

- 447 nm blue laser
- 447 nm blue laser

Cancer combination therapy

- Small single tumors are ideal for PDT treatment alone
- PDT alone is not effective in
- big tumors
- widely spreading tumors
- multiple metastases

Here we need combination of PDT with other anticancer drugs and methods.

Cancer combination therapy

Cancer combination therapy

- 1. Combination with traditional chemotherapy
- 2. Combination with light sensitive chemodrugs (using chemodrugs as photosensitizers)
- 3. Combination with antioxidants
- 4. Combination with antiangionesis inhibitors
- 5. Combination with Cox-2 inhibitors
- 6. Combination with antibodies
- 7. Combination with different natural compounds
- 8. Combination with immunotherapy

5-Fluorouracil as a Phosensitiser

MIHAIL LUCIAN PASCU1, MIHAIL BREZEANU1, LETITIA VOICU1, ANGELA STAICU1, BENONE CARSTOCEA2 and RUXANDRA ANGELA PASCU2

INational Institute for Lasers, Plasma and Radiation Physics, Laser Department, P. O. Box MG-36, Bucharest – Magurele; 2Central Military Hospital, Ophthalmology Clinic, Bucharest, Romania

Abstract

5-FU exhibits a high fluorescence after irradiation with UV-vis light. An enhancement of the cytostatic activity of 5-FU under UV-vis irradiation was observed on an in vivo experimental model.

The tautomeric forms of 5-FU

Mitoxantron as photosensitizer

- Mitoxantron is a blue substance
- Mitxantron is activated by yellow and red light
- Mitoxantron is a strong chemophotosensitizer
- Is effective in multiple cancer varieties

Mitoxantron

Mitoxantron as photosensitizer

Mitoxantron stimulation (Y-cannula)

Doxorubicin (liposomal) as photosensitier

- Is widely used for many different cancers (Anthracyclin antibiotics)
- Is an orange solution and is stimulated by visible laser light
- Can be enhanced by liposomal delivery (Doxil)
- Stimulation by blue-green light

Doxorubicin liposomal

Doxorubicin (liposomal) as photosensitizer

Doxorubicin stimulation

Hyperbaric oxygen chamber

New therapeutic strategies for cancer therapy

- Photodynamic therapy with liposomal ICG, Chlorin E6, Hypericin and Curcumin (external, interstitial, intratumoral irradiation)
- Hyperbaric oxygene therapy
- Low dose chemotherapy using chemodrugs as photosensitizers
- Immunotherapy with intravenous laser blood irradiation
- Immunotherapy with GcMAF and others

GcMAF

- Vitamin D binding protein is known as Gc Protein.
- This protein binds in the body to 25-hydroxy vitamin D
- Macrophage activating factors (MAF) are glycoproteins that increase macrophage activity and transform them in natural killer cells.
- Vitamin DBP (Gc-protein) is the primary MAF.
- The glycosylated Gc protein is the best MAF.

GcMAF

- NaGalaser is an enzyme produced in small amount by liver cells
- But is produced in large amounts by cancer cells.
- NaGaLase deglycosylates Gc protein and so has an immunsuppressive effect.
- NaGaLase is also produced by different viruses, bacteria and fungi

GcMAF

Gc-MAF macrophage activation therapy is useful in the treatment of many diseases, such as cancer, HIV AIDS, Hepatitis B virus (HBV), Hepatitis C virus (HCV), Herpes Simplex virus (HSV), Tuberculosis, Pneumonia infection, Epstein-Barr virus (EBV), cystitis/urinary tract infection

TBL-12 from sea Curcumber

- Works against neoangiogenesis by inhibiting VEGF
- Inhibits proliferation of cancer cells by apoptosis
- Promising effects on melanoma and leukemia
- Taken orally
- No side effects

Suppression of Human Multiple Myeloma Cell Growth by TBL-12 in Combination with low doses of Velcade: Insight in to the modulation of IL-6/STAT-3 mechanisms

Bhagavathi A. Narayanan, PhD1, Caroline Cunnigham1 and Amitabha
Mazumder, MD2
1Departments of Environmental Medicine, 2Clinical Cancer Center New
York University School of Medicine, NY

TBL-12 from sea Curcumber

Results:

We observed cell survival rate reduced from 100 % to 30% at 48h and significantly reduced to 20% at 72h (p<0.001) in both MM1 and U266 cells. These findings suggest low dose effect of Velcade in combination with TBL-12 in a time dependent manner.

Conclusion:

Overall findings from this study suggest the potential use of TBL-12 in combination with Velcade against MM. Ongoing trials with TBL-12 at NYUCI and this correlative data could support future clinical trials.

ISLA Annual Laser Conference Beverungen/ Germany

June, 10th/11th 2016

Thank you www.isla-laser.org

